4国激光

第11卷 第1期

HND-120 型可见光 He-Ne 多谱线激光器的研制

游大江 赵绥堂

(北京大学)

提要:研制了一种用色散棱镜调谐的多谱线 He-Ne 激光器。 已获得可见区内 8 种不同波长的输出,在 6328 埃与 6118 埃处的输出功率分别为 30 毫瓦和 10 毫瓦。 讨论了有关这类多谱线激光器的设计问题及其性能。

Study of model HND-120 visible multi-wavelength He-Ne laser

You Dajiang, Zhao Suitang

(Department of Physics, Beijing University)

Abstract: A multi-wavelength He-Ne laser tuned by a dispersion prism has been developed. Laser lines of eight different wavelengths in visible region have been obtained with 30 mW output power at 6328 Å and 10 mW at 6118 Å. Some problems on the design of this laser are discussed and its performances are described.

一、引 言

HND-120型可见光氦-氖多谱线激光器,是在研制 6118 Å He-Ne 激光器的基础上^{LLI},对 HND-120型 He-Ne 激光器作了一些重要改进后研制成功的。这种多谱线激光器可输出 7305、6401、6352、6328、6294、6118、6046 和 5939 Å 等波长的 偏振激光。 在换了输出镜片后,还能使 6328 Å 的激光输出功率在 30毫瓦以上,6118 Å 的激光输出功率在 10毫瓦以上。因而它可作为校准 单色仪等光学仪器的光源,测量光学器件的 频率特性,如测定光电管的量子产额与频率 的关系等;它还可用于激光测长、光测弹性、 光全息照相及光信息处理等研究工作中。

我们所研制的 HND-120 型 氦-氖激光器, 它输出的是可见激光, 这些波长的激光分别属于 Ne 原子 3s₂→2p_i 的受激跃迁^[3~4]。激光器采用外腔式, 在腔内附加色散棱镜(图1) 来获得调谐波长, 选择不同波长的激光输出。

• 34 •

由于 6118 Å 等波长的激光增益远低于 6328 Å,因此整个系统的设计必须使损耗尽 可能地小。这就要求我们对腔结构的选取、 棱镜和窗片材料的选用及设计加工、反射膜 片的选取及波长调谐结构的机械设计和加工 等作深入细致的考虑。

二、HND-120 型激光器的设计

1. 腔结构的选择

为减少系统的损耗,合理地选择腔结构 是十分重要的。对 TEM₀₀模,共焦腔具有最 小的衍射损耗。此外因选波长时需要转动放 置有棱镜和反射镜组合部件的平台,故希望 腔对可能引起的竖直方向上的角度失调灵敏 度要低(即允许的校准容限较大)。共焦腔和 半球腔有着较大的校准容限⁵⁵¹,所以我们选 近共焦腔结构,其参数如下:

毛细管直径	d=2.4毫米
增益管长	lo=1000 毫米
腔长	1=1200 毫米
反射镜曲率半	径

R1、R2 取 2000~3000 毫米

2. 对布鲁斯特窗片和反射镜片的考虑

在 HND-120 型激光器中的激光管,其 二端布氏窗片是用透明度较高损耗较小的石 英材料加工而成的。腔的反射镜我们选用 对波长 6328 Å 的反射率 r_2 =99.9% 的膜 片。 R_1 是输出镜片,由于对不同波长的激光 有着不同的最佳输出,因此我们选用了以下 几种膜片:反射率 r_1 =98.8%,透过率 t_1 = $1.00\%, R_1 = \infty$;反射率 r_1 =99.8%,透过率 t_1 =0.05%, R_1 =2 米;反射率 r_1 =99.0%, 透过率 t_1 =0.5%, R_1 =3 米。

3. 色散棱镜

色散棱镜的顶角

$$\alpha = 2 \operatorname{tg}^{-1} \frac{1}{n} = 2 \psi_i,$$

ψi 为棱镜的内布氏角。棱镜的材料是用石英

玻璃和 ZF₂ 玻璃,表面加工光洁度要求较高 (I~II 级)。

在研制过程中,我们发现对于近共焦腔 结构,强激光谱线出光时,当棱镜和反射镜的 组合部件左右偏调1′时,仍可出该谱线激光, 偏调到1′多才被抑制。所以,如果想要分开 两条不同波长的激光,就必须选择适当的玻 璃材料做色散棱镜,使色散角满足:

 $d\delta > 1.5' = 4 \times 10^{-4}$ (弧度)。 石英玻璃虽然吸收系数较小,但色散不够大, 若只用一个石英色散棱镜,就无法使 6328Å 与 6352Å 两谱线间的色散角 $d\delta > 1.5'$,故 无法选出 6352Å 激光。ZF₂ 玻璃具有色散 较大的优点,但吸收系数也较大。因此在研 制时,我们分别使用石英和 ZF₂ 玻璃两种材 料来制造布氏角棱镜,前者可使腔内损耗小、 输出功率大,而后者可使 6352Å 与 6328Å 等较近的激光谱线分开,达到选波长的目的。 表1给出了各类棱镜和不同波长所对应的色 散角 $d\delta$ (均以 6328Å 为基准计量)。

棱镜除要求表面光洁度外,还要求底部 与顶角棱垂直,偏离垂直量应小于10'。这样 便于安装调整,使棱镜顶角棱和平台转轴平 行。

此外,对放电管的布氏角及二布氏窗片 之间的扭角也都有较高的要求,计算结果表 明为了使整个系统损耗小于 0.1%,应使扭 角 <24′,布氏角的偏离量也应 <25′^[4]。

4. 波长调节机构

波长调节机构的设计要求是:(a)在旋转 棱镜和反射镜组合部件的过程中,入射面始 终应垂直于棱镜顶角棱;(b)水平方向(或竖 直方向)转动的微调机构能微调到10"的量 级;(c)转台的旋转轴应和色散棱镜的顶角 棱平行。此外反射镜应和棱镜同固定在平台 上,反射镜本身还应有二维调节能力,以便校 准谐振腔的光轴与放电毛细管的轴线重合。

5. 增益管配气比和总气压

由于这几条谱线都具有共同的上能级

· 35 ·

表1 $d\delta$ 与棱镜材料及波长的关系

棱镜材料	顶角α	$d\delta$								
		7305 Å	$6401{ m \AA}$	6352 Å	6328 Å	6294 Å	6118 Å	6046 Å	5939 Å	5433 Å
ZF_2	$61^{\circ}49'\pm2'$	-1°02′40″	-4'41''	-1'35''	0	2'	14'02''	18'49''	25'57''	片的沿现
融熔石英	$68°54'\pm2'$	-16'14"	-1'31"	-29"	0	45"	4'24''	5′55′′	8'07''	10'42"

 $3s_2$,从荧光测试又可看到下能级 $2p_i$ 的粒子 布居数随放电电流增加而增加的情况,虽然 各有差别,但上下能级间最大的粒子布居数 之差值 $\left(N_{3s_2} - N_{2p_i} \frac{g_{3s_2}}{g_{2p_i}}\right)_{\max}$ 对这几条谱线 差别都不太大,只是 $3s_2 \rightarrow 2p_{10}(5433 \text{ Å})$ 的小 一些,它仅是其它谱线粒子布居数差平均值 的 0.65 倍^[4],所以我们仍采用与 HND-120 型管子相同的最佳配气条件:

³He: ²⁰Ne=7:1; $p_{\pm} \cdot d = 3.6$ 托·毫米。

三、工作条件和激光器性能

对 6118 Å 等弱增益谱线,工作电流的选 取是十分重要的。 在研制中发现 6118 Å 和 6328 Å 波长激光的最佳工作电流相差甚大。 而且最佳工作电流还随 pd 值而改变, pd 值 高时,最佳工作电流降低, pd 值低时,最佳工 作电流升高。

图 2~4, 分别给出了5个不同波长的激 光谱线, 其输出功率随放电电流变化。

为满足各种不同的需要,我们在两台激 光器上分别配上两种不同的调节装置: A型 是平台式的,可产生水平偏振光,用 ZF₂ 玻

表2	HND-120	型激光器的部分	特性参数测量值	直

	波 长 (Å)								
坝 目	7305	6401	6352	6328	6294	6118	6046	5939	
启辉电压(千伏)		6428	1 1200	<	9.5			144144	
工作电压(千伏)	3.9	3.8	3.8	3.6	3.8	3.8	3.9	3.9	
工作电流(毫安)	11.0	12.0	15.0	23.0	16.0	15.5	12.5	11.0	
激光模式				TE	2M ₀₀			the states	
功率稳定性		- 12	in the second	优于	$\pm 5\%$	n (1) - Acaan		10.473	
发散角		平凹(1		0.8 毫弧度	凹凹 (^{R1=} R2=	=3 % =3 % 1.	0毫弧度	A STAR	
偏振方向		at la ci	A 型	水平 ±5°	B型 垂	直 ±5°	-	200.0 st	
偏振度				优于	3%。				

图 5

B型 7305Å

图 7

B型 6118Å 图 6

B型 6046Å 图 8

表3 A 型激光器参数测量值

 ZF_2 棱镜 $R_2=3$ 米 $r_2=99.9\%$ $R_1=3$ 米 $r_1=99.42\%$ $t_1=0.18\%$

	波 长 (Å)								
坝目	7305	6401	6352	6328	6294	6118	6046	5939	
输出功率(毫瓦)		1.2	0.3	5.9	1.5 .	1.2			
最佳工作电流(毫安)		12.0	15.0	20.0	15.5	15.5			
多普勒线宽内纵模间隔个数		10	8	17	9	8			

表4 B 型激光器参数测量值

石英棱镜	$R_2 = 3 *$	$r_2 = 99.9\%$

於山德山虎州		波 长 (Å)							
制出現月 行性	测 重 坝 日	7305	6401	6352	6328	6294	6118	6046	5939
$R_1 = \infty$ $r_1 = 98.8\%$ $t_1 = 1.0\%$	输出功率(毫瓦)	tar de			31		9.4		
	纵模间隔数(个)				14	and show	10		
$R_1 = 3 \%$ $r_1 = 99.2\%$ $t_1 = 0.5\%$	输出功率(毫瓦)	to Mill	7.9		23		7.9		
	纵模间隔数(个)			an milite					
$R_1=2 \ \%$ $r_1=99.88\%$ $t_1=0.05\%$	输出功率(毫瓦)	0.6	0.3		2.1	0.4	1.8	0.9	0.7
	纵模间隔数(个)	7	9	~光后	16	10	10	8	4
	最佳工作电流(毫安)	11.0	12.0		20.0	15	15.5	12.5	11.0

注: (1) 表上给的镜片特性都是用 6328 Å 激光测定的。

(2) 功率读数除去 B 型第二组外,都是用英国激光仪器公司 154 型热偶式功率计测定的。B 型第二组则是用 JGK-1 型激光功率计测定的,未作光谱灵敏度的校正,但与 154 型作过比较在以上频率范围内二者相差不过 ±0.1 毫瓦。

璃棱镜能将 6352 Å 与 6328 Å 谱线分辨 开, 所以能产生 6352 Å 的激光; B 型是 插 件 式 的转镜固定在竖直调节板上,可产生垂直偏 振光,用石英玻璃棱镜可提供较高的输出功 率。当配上 全 反镜 后,可 输出 6352 Å 及 5433 Å 以外的其它七条谱线。

表 2 给出了 HND-120 型激光器的一般 工作条件和部分参数测量值。

图 5~8 给出了其中几条谱线在多 普 勒 线宽内的纵模图象,它们都是在 TEM₀₀ 模运 转。

表3及表4给出A和B两种类型的激 光器配上不同输出镜片后各种波长的输出功 率等参数测量值。 本研制工作曾得到中国计量科学研究院 量子室、上海玻璃仪器一厂等单位的大力协 作和热情帮助,在此表示感谢。

参考文献

- [1] 郑乐民等;"中国电子学会第三届全国学术会议年 会论文集", 1982, p. 119.
- [2] 北京大学物理系光学教研室编;"激光原理", 1981, p. 64, 199.
- [3] C. L. Tang; "Methods of Experimental Physics",
 15, Part A, Quantum Electronics, New York, 1979, p. 101~113.
- [4] 郑乐民等; 《北京大学学报》(自然科学版), 待发表。
- [5] J. P. Goldsborough; Laser Handbook, 1972, 1, 599.